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ABSTRACT: A Bayesian framework is presented for structural model selection and damage identification utilizing measured vibration data. The framework consists of a two-level approach. At the first level the problem of estimating the free parameters of a model class given the measured data is addressed. At the second level the problem of selecting the best model class from a set of competing model classes is addressed. The application of the framework in structural damage detection problems is then presented. The structural damage detection is accomplished by associating each model class to a damage location pattern in the structure, indicative of the location of damage. Using the Bayesian model selection framework, the probable damage locations are ranked according to the posterior probabilities of the corresponding model classes. The severity of damage is then inferred from the posterior probability of the model parameters corresponding to the most probable model class. Computational issues are addressed related to the estimation of the optimal model within a class of models and the optimal class of models among the alternative classes. Asymptotic approximations as well as Monte Carlo simulations are used for estimating the probability integrals arising in the formulation. The framework can be used for assessing the reliability of structures based on the measured vibration data. The proposed methodology is illustrated by applying it to the identification of the location and severity of damage of a laboratory small-scaled bridge using measured vibration data.
1 Introduction
In structural dynamics applications there is a need for selecting and updating a theoretical model of a structure (e.g. a finite element model) that can used to make predictions of structural response and reliability (Papadimitriou et al. 2001). Moreover, a model selection and updating methodology is useful in assessing structural damage by continually updating the structural model using vibration data (Beck and Katafygiotis 1998; Sohn and Law 1997; Fritzen at al. 1998; Hemez and Farhat 1995; Lam et al. 2004; Teughels and De Roeck 2005). A Bayesian inference framework (e.g. Carlin and Louis 2000) is attractive for model selection and updating utilizing measured data. The Bayesian inference framework proposed in this work consists of a two-level approach. At the first level one proceeds with the selection of the best model class from a set of competing model classes. At the second level the free parameters of a model class are estimated given the measured data. The Bayesian framework has been successfully applied in structural identification problems using vibration measurements. In particular, asymptotic methods have been employed to address important issues related to the selection of the most appropriate model class involving the least number of parameters (Beck and Yuen 2004), as well as to study the role that the information contained in the measured data plays for constructing reliable structural models (Papadimitriou and Katafygiotis 2004). 

The present work focuses on the application of the Bayesian framework in structural damage detection problems. The structural damage detection is accomplished by associating a model class to a damage location pattern in the structure, indicative of the location of damage. Applying the Bayesian model selection framework using vibration measurements, the probable damage locations are ranked according to the posterior probabilities of the corresponding model classes. The severity of damage is then inferred from the posterior probability of the model parameters corresponding to the most probable model class. Model class selection in Bayesian framework requires the estimation of multi-dimensional probability integrals. Asymptotic approximations as well as Monte Carlo simulations are presented for estimating the integrals arising in the formulation. 
2 Bayesian INFERENCE for model class selection
Let 
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 be the available measured data consisting of modal frequencies 
[image: image2.wmf]ˆ

r

w

 and modeshape components 
[image: image3.wmf]ˆ

r

f

 at 
[image: image4.wmf]0

N

 measured DOFs, where 
[image: image5.wmf]m

 is the number of observed modes. Consider a family of 
[image: image6.wmf]m

 alternative, competing, parameterized finite element model classes, designated by 
[image: image7.wmf]i

Μ

, 
[image: image8.wmf]1,,

i

m

=

L

, and let 
[image: image9.wmf]i

N

i

R

q

Î

q

 be the free parameters of the model class 
[image: image10.wmf]i

Μ

, where 
[image: image11.wmf]i

N

q

 is the number of parameters in the set 
[image: image12.wmf]i

q

. Let  
[image: image13.wmf](;)

ii

P=

q

Μ



 EMBED Equation.DSMT4  [image: image14.wmf]{(;), (;)

riirii

w

qfq

ΜΜ

 
[image: image15.wmf]0

,

N

R

Î


[image: image16.wmf]1,,}

rm

=

L

 be the predictions of the modal frequencies and modeshapes from a particular model in the model class 
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 corresponding to a particular value of the parameter set 
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A Bayesian probabilistic framework is next briefly presented which is attractive to address the problem of comparing two or more competing model classes and selecting the optimal model class based on the available data. The Bayesian approach to statistical modeling uses probability as a way of quantifying the plausibilities associated with the various model classes 
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 of these model classes given the observed data 
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. Before the selection of data, each model class 
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 of being the appropriate class of models for modeling the structural behavior. Using Bayes’ theorem, the posterior probabilities 
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where 
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 is selected so that the sum of all model probabilities equals to one, and  
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where 
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 defined as the difference between the measured modal properties involved in 
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 is given separately for the modal frequencies and modeshapes from the prediction error equations:
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where 
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, is a normalization constant that accounts for the different scaling between the measured and the predicted modeshape. The model prediction errors are due to modeling error and measurement noise. Herein, they are modeled as independent Gaussian zero-mean random variables with variance 
[image: image49.wmf]2

i

s

. Also, given the model class 
[image: image50.wmf]i

Μ

, the prior probability distribution 
[image: image51.wmf](,|)

iii

p

qs

Μ

, involved in 
(2)

, of the model and the prediction error parameters  GOTOBUTTON ZEqnNum345939  \* MERGEFORMAT  of the model class 
[image: image53.wmf]i

Μ

 are assumed to be independent and of the form 
[image: image54.wmf](,|)()()

iiii

qs

ppp

=

qsqs

Μ

. 
Assuming that the prediction errors are Gaussian and independent, the likelihood in (2)

 is readily obtained in the form (Christodoulou and Papadimitriou 2007) 
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where
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represents the measure of fit between the measured modal data and the modal data predicted by a particular model in the class 
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, and 
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 is the usual Euclidian norm. In deriving (5)

, the ratio between the standard deviations of the prediction errors for the modeshape components and the modal frequencies was taken for simplicity to be equal to one. 
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where 
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 is a constant independent of the model class 
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 is a multiplicative constant that depends on the number of data, while it is independent of the model class.
When the number of parameters is more than a few, the numerical integration in (7)

 is computationally prohibitive. In principle, one can use Monte Carlo simulations to compute the integral. In this case, an estimate of the integral is provided by the formula: 
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where 
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 at the undamaged condition. However, Monte Carlo simulation may require a large number of samples and can be computationally inefficient. Importance sampling methods (Papadimitriou et al. 1997) can also be used to efficiently compute the integral (7)

. 

Alternatively, an asymptotic approximation based on Laplace’s method (Bleistein and Handelsman 1986), can also be used to give a useful and insightful estimate of the integral in the form (Papadimitriou and Katafygiotis 2004)
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where 
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where 
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, known as the Ockham factor, simplifies for large number of data  GOTOBUTTON ZEqnNum767274  \* MERGEFORMAT  to (Yuen 2002, Beck and Yuen 2004)
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where it is evident that it depends from the number 
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. It should be pointed out that the optimisation problem for finding 
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 for each model class are solved using efficient hybrid optimization techniques that guarantee the estimation of the global optimum (Christodoulou and Papadimitriou 2007).
It should be noted that the asymptotic approximation is valid if the optimal value 
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. Specifically, Monte Carlo simulation can be used which may require a large number of samples and can be computationally inefficient. Importance sampling methods (Papadimitriou et al. 1997) as well as Markov Chain Monte Carlo (Au 2001; Beck and Au 2002; Katafygiotis and Cheung 2002) may be applicable to efficiently evaluate the integral in (7)

. For the cases for which this condition is violated or for the case for which more accurate estimates of the integral are required, one can use alternative stochastic simulation methods to evaluate the integral 
The optimal model class 
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. It is evident that the selection of the optimal model class depends on the measure of fit  GOTOBUTTON ZEqnNum767274  \* MERGEFORMAT  between the measured modal characteristics and the modal characteristics predicted by the optimal model of a model class 
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, the ordering of the model classes in  GOTOBUTTON ZEqnNum150465  \* MERGEFORMAT  of the structural model parameters that are involved in each model class. Specifically, model classes with large number of parameters are penalized in the selection of the optimal model class.
Finally, the probability distribution 
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 given the data is obtained by applying Bayes’ theorem (Beck and Katafygiotis 1998) and then finding the marginal distribution of the structural model parameters. For the model class 
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where 
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 is a normalizing constant guaranteeing that the PDF integrates to one.  It is evident from 
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3 Damage detection methodology 
The Bayesian inference methodology for model class selection based on measured modal data is next applied to detect the location and severity of damage in a structure. A substructure approach is followed where it is considered that the structure is comprised of a number of substructures. It is assumed that damage in the structure causes stiffness reduction in one of the substructures. In order to identify which substructure contains the damage and predict the level of damage, a family of 
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 model classes 
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 is introduced, and the damage identification is accomplished by associating each model class to damage contained within a substructure. For this, each model class 
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 is assumed to be parameterized by a number of structural model parameters 
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 controlling the stiffness distribution in the substructure 
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, while all other substructures are assumed to have fixed stiffness distributions equal to those corresponding to the undamaged structure. Damage in the substructure 
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 will cause stiffness reduction which will alter the measured modal characteristics of the structure. The model class 
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 can adjust to the modified stiffness distribution of the substructure 
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 will provide a poor fit to the modal data. Thus, the model class 
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 can predict damage that occurs in the substructure 
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 and provide the best fit to the data.
Using the Bayesian model selection framework in Section 2, the model classes are ranked according to the posterior probabilities based on the modal data. The most probable model class 
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, through its association with a damage scenario on a specific substructure, will be indicative of the substructure that is damaged, while the most probable value  GOTOBUTTON ZEqnNum767274  \* MERGEFORMAT  of the model parameters of the corresponding most probable model class 
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, compared to the parameter values of the undamaged structure, will be indicative of the severity of damage in the identified damaged substructure. For this, the percentage change 
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The selection of the competitive model classes 
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 depends on the type and number of alternative damage scenarios that are expected to occur or desired to be monitored in the structure. The 
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 model classes can be introduced by a user experienced with the type of structure monitored. The prior distribution 
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 of each model class or associated damage scenario is selected based on the previous experience for the type of bridge that is studied. For the case where no prior information is available, the prior probabilities are assumed to be equal,  GOTOBUTTON ZEqnNum767274  \* MERGEFORMAT , for all introduced damage scenarios.
4 Application to a small-scaled laboratory bridge section 

The methodology is validated using measured modal data from a laboratory small-scaled section of a bridge shown in Figure 1a. The laboratory structure is made of steel and simulates a simply supported section of a bridge resting on rigid foundation through bearings. In order to avoid nonlinear phenomena due to sliding of the bearings during the vibration of the bridge, the faces of the bearings are glued to the foundation and the bridge deck. The bearings are simulated using square sections of White Nylon 66 material of edge size 14mm. Damage is simulated at the bearings by changing the size of the left and right bearings. This change is achieved by replacing the bearings with smaller ones of edge size 10mm.
The section of the beam at its undamaged and its damaged state was instrumented with 14 accelerometers, measuring along the longitudinal (2 sensors), vertical (8 sensors) and transverse (4 sensors) directions. The modal characteristics of the undamaged and damaged structure were obtained by analyzing measured acceleration response time histories from several impulse hammer tests using conventional modal analysis software that processes simultaneously the transfer functions at the measured locations. The damage detection methodology make use of the following five modal frequencies and modeshapes of the undamaged and damaged structure: 1st longitudinal, 1st and 2nd bending, 1st transverse and 1st torsional. The corresponding identified values of the modal frequencies are (in Hz): 108.7, 18.52, 60.08, 31.10 and 46.65 for the undamaged structure, and 69.74, 17.08, 59.22, 29.98 and 42.96 for the damaged one. 
A finite element model was also constructed using beam elements to describe the behaviour of the bridge in its undamaged and damaged states. The deck and the bearings were modeled using three-dimensional two-node elements. The total number of DOF is 350. The finite element model was first calibrated to fit the modal characteristics of the undamaged structure using the model updating methodologies (Ntotsios et al. 2008). The modal characteristics of the damaged structure which contain significant information about the damaged state at the bearings were then used to predict the damage location and severity based on the proposed damage detection methodology. 
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       (a)
                  (b)
Figure 1: (a) Small scale section of bridge with sensors, (b) Finite element model.

Based on the damaged detection methodology, nine (9) competitive model classes 
[image: image146.wmf]19

{,,}

L

MM

, given in Table 1, were introduced to monitor various probable damage scenarios corresponding to single and multiple damages at different substructures. The stiffness related parameters used in each model class involve the modulus of elasticity 
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 of the deck, the modulus of elasticity 
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 of the bearings and the cross-sectional moment of inertia 
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 and 
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 of the bearings with respect to the global coordinate system shown in Figure 1b. All model classes are generated from the updated finite element model of the undamaged structure. Based on the parameterization shown in Table 1, it is expected that the methodology will give as the most probable model class one of 
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 that contain the actual damage. The results for the probability of each model class and the value of the measure of fit 
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, between the measured and the optimal model predicted modal characteristics for all model classes, are also reported in Table 1.

Table 1: Probability 
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Comparing the probability 
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 of each model class and also the corresponding magnitude of damages 
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 predicted by each model class it is evident that the proposed methodology correctly predicts the location and magnitude of damage. Among all alternative model classes 
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 that contain the actual damage, although the model classes 
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 predict the smallest measure of fit 
[image: image195.wmf]J

, the proposed methodology favors with probability 0.708 the model class 
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 with the least number of parameters, which is consistent with theoretical results available for Bayesian model class selection (Beck and Yuen 2004). The reduction of 55.2% of the modulus of elasticity at the left and right bearings, predicted by the most probable model class 
[image: image197.wmf]4

M

, is an indication of the severity of damage caused by reducing the edge length of the bearings from 14mm to 10 mm. The model class 
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 is the second most probable model class, involving two parameters, favored with probability 
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 and correctly predicts the magnitude of damage to be 54.3%, at approximately the same level as that predicted by the most probable model class 
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. The third most probable model class 
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, although it does not contained the damage, it is favored by the methodology in relation to the other two model classes 
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 and 
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 that contain the damage. The model class 
[image: image204.wmf]2

M

 predicts damage of magnitude 68.4% at the left bearing, while by construction it fails to predict damage at the right bearing since there are no parameters in this model class to monitor changes in the right bearings. The model classes 
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 and 
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, involving two and three parameters, respectively, also correctly predict the magnitude of damage to be at the same levels (approximately 59% at the left bearing and 49% to 52% at the right bearing) as that predicted by the most probable model class 
[image: image207.wmf]4

M

. The slight differences in the predictions from the model classes that contain the damage and the slight increase of the stiffness for the deck, of the order of 7%, predicted from model classes 
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 are due to the measurement and model errors.
5 conclusions

A Bayesian inference framework for structural model selection and updating using vibration measurements was presented and applied to the identification of the location and severity of damage of structures using measured modal data. The effectiveness of the damage detection methodology was illustrated using measured vibration data from a small-scaled laboratory section of a bridge. Results provided useful information on the strength and limitations of the methodology. The effectiveness of the methodology depends on several factors, including the model classes and parameterization that are introduced to simulate the possible damage scenarios,  the type, location and magnitude of damage or damages in relation to the sensor network configuration, as well as the model and measurement errors in relation to the magnitude of damage. Damages of relatively small magnitude may be hidden and difficult to be identified. Damage predictions can be improved by introducing high fidelity finite element model classes and estimation algorithms that provide more accurate values of the modal characteristics. 
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